아주대의료원 박래웅 교수팀
DB 활용 '내성 예측 AI' 개발


감염질환에서 의료 빅데이터를 기반으로 한 '항생제 내성 예측 AI(인공지능)'가 개발됐다.

아주대의료원 의료정보학교실 박래웅 교수팀은 상급종합병원 275만명의 공통데이터모델 데이터베이스를 활용한 AI 기반의 '경험적 항생제' 내성 예측 모형을 만들었다고 밝혔다. 중증 감염병 환자가 입원할 경우 정확한 항생제 처방을 위해 항생제 내성 여부를 확인해야 하지만, 처방을 미룰 수 없는 경우 경험적으로 가장 적합한 항생제를 시행하고 있다.

이번에 개발된 예측 모형은 입원 환자 가운데 병원성 요로감염 의심 환자를 대상으로 환자 기저 특성, 타 기관 전원 기록, 항생제 감수성 경향 등 다양한 정보를 활용했다. 연구팀은 연구결과 8가지 항생제 감수성 패널 결과를 예측하는 이번 모형의 성능이 기존의 다른 선행 연구결과보다 더 우수한 결과를 보였다고 설명했다.

항생제 내성의 원인으로는 불필요한 투여, 부적절한 항생제(경험적 항생제 포함) 선택, 용법·용량 오류, 투여 시간 지연 등의 경우가 있다. 항생제 내성 문제가 계속될 경우 오는 2050년이면 전 세계적으로 매년 약 1천만명이 사망할 수 있다고 예측될 정도다. 연구팀은 올바른 경험적 항생제 선택이 불필요한 범위의 항생제 사용과 내성 확산을 막을 수 있다고 전했다.

박래웅 교수는 "이번 연구는 감염 질환의 특성에 맞는 주요 대규모 의료 데이터를 확보해 실제로 활용 가능한 임상의사 결정 지원 시스템 모형을 개발했다는 데 의의가 있다"며 "진료 현장에서 개인별 맞춤형 경험적 항생제 선택을 실현하는데 기여하길 바란다"고 말했다.

한편, 이번 예측 모형은 임상에서 활용성을 높이기 위해 웹 기반 애플리케이션 형태로도 개발됐으며, 보건복지부 감염병의료안전강화기술개발사업 지원으로 연구를 수행했다.

/구민주기자 kumj@kyeongin.com